nanofluid flow and heat transfer over a stretching porous cylinder considering thermal radiation

نویسندگان

d. d. ganji

چکیده

the aim of the present paper is to study the cu-water nanofluid flow and heat transfer characteristics of a stretching permeable cylinder. thermal radiation effect is considered in energy equation. the governing partial differential equations with the corresponding boundary conditions are reduced to a set of ordinary differential equations with the appropriate boundary conditions using similarity transformation, which is then solved numerically by the fourth order runge–kutta integration scheme featuring a shooting technique. numerical results for the flow and heat transfer characteristics are obtained for various values of the nanoparticle volume fraction, suction parameter, reynolds number and radiation parameter. the results show that skin friction coefficient increases with increase of reynolds number and suction parameter but it decreases with increase of nanoparticle volume fraction. nusselt number is an increasing function of nanoparticle volume fraction, reynolds number and suction parameter but it is a decreasing function of radiation parameter.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MHD Three-Dimensional Stagnation-Point Flow and Heat Transfer of a Nanofluid over a Stretching Sheet

In this study, the three-dimensional magnetohydrodynamic (MHD) boundary layer of stagnation-point flow in a nanofluid was investigated. The Navier–Stokes equations were reduced to a set of nonlinear ordinary differential equations using a similarity transform. The similarity equations were solved for three types of nanoparticles: copper, alumina and titania with water as the base fluid, to inve...

متن کامل

Radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet

In this work, we study the flow and heat transfer characteristics of a viscous nanofluid over a nonlinearly stretching sheet in the presence of thermal radiation, included in the energy equation, and variable wall temperature. A similarity transformation was used to transform the governing partial differential equations to a system of nonlinear ordinary differential equations. An efficient nume...

متن کامل

Effect of magnetic field on the boundary layer flow, heat, and mass transfer of nanofluids over a stretching cylinder

The effect of a transverse magnetic field on the boundary layer flow and heat transfer of anisothermal stretching cylinder is analyzed. The governing partial differential equations for themagnetohydrodynamic, temperature, and concentration boundary layers are transformed into a setof ordinary differential equations using similarity transformations. The obtained ordinarydifferential equations ar...

متن کامل

Analytical solution of MHD flow and heat transfer over a permeable nonlinearly stretching sheet in a porous medium filled by a nanofluid

In this paper, the differential transform method and Padé approximation (DTM-Padé) is applied to obtain the approximate analytical solutions of the MHD flow and heat transfer of a nanofluid over a nonlinearly stretching permeable sheet in porous. The similarity solution is used to reduce the governing system of partial differential equations to a set of nonlinear ordinary differential equations...

متن کامل

Heat and mass transfer of nanofluid over a linear stretching surface with Viscous dissipation effect

Boundary Layer Flow past a stretching surface with constant wall temperature, of a nanofluid is studied for heat transfer characteristics. The system of partial differential equations describing such a flow is subjected to similarity transformations gives rise to a boundary value problem involving a system of ordinary differential equations. This system is solved by a shooting method. Effect of...

متن کامل

Boundary layer flow and heat transfer over a nonlinearly permeable stretching/shrinking sheet in a nanofluid

The steady boundary layer flow and heat transfer of a nanofluid past a nonlinearly permeable stretching/shrinking sheet is numerically studied. The governing partial differential equations are reduced into a system of ordinary differential equations using a similarity transformation, which are then solved numerically using a shooting method. The local Nusselt number and the local Sherwood numbe...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
iranian journal of science and technology (sciences)

ISSN 1028-6276

دوره 39

شماره 3.1 2015

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023